Youthful-Passion-Fruit-teambook

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub AlexanderNekrasov/Youthful-Passion-Fruit-teambook

:warning: math/ModularSqrt.cpp

Code

/**
 * Author: Iurii Pustovalov
 * Date: 2024-09-09
 * Description: Calculating sqrt modulo smth
 * Time: O(log^2)
 */
ll sqrt(ll a, ll p) {
  a %= p;
  if (a < 0) a += p;
  if (a == 0) return 0;
  assert(modpow(a, (p - 1) / 2, p) == 1);  // e lse no so lution
  if (p % 4 == 3) return modpow(a, (p + 1) / 4, p);
  // a^(n+3)/8 or 2^(n+3)/8 * 2^(n=1)/4 works i f p % 8 == 5
  ll s = p - 1, n = 2;
  int r = 0, m;
  while (s % 2 == 0) ++r, s /= 2;
  while (modpow(n, (p - 1) / 2, p) != p - 1) ++n;
  ll x = modpow(a, (s + 1) / 2, p);
  ll b = modpow(a, s, p), g = modpow(n, s, p);
  for (;; r = m) {
    ll t = b;
    for (m = 0; m < r && t != 1; ++m) t = t * t % p;
    if (m == 0) return x;
    ll gs = modpow(g, 1LL << (r - m - 1), p);
    g = gs * gs % p;
    x = x * gs % p;
    b = b * g % p;
  }
}
#line 1 "math/ModularSqrt.cpp"
/**
 * Author: Iurii Pustovalov
 * Date: 2024-09-09
 * Description: Calculating sqrt modulo smth
 * Time: O(log^2)
 */
ll sqrt(ll a, ll p) {
  a %= p;
  if (a < 0) a += p;
  if (a == 0) return 0;
  assert(modpow(a, (p - 1) / 2, p) == 1);  // e lse no so lution
  if (p % 4 == 3) return modpow(a, (p + 1) / 4, p);
  // a^(n+3)/8 or 2^(n+3)/8 * 2^(n=1)/4 works i f p % 8 == 5
  ll s = p - 1, n = 2;
  int r = 0, m;
  while (s % 2 == 0) ++r, s /= 2;
  while (modpow(n, (p - 1) / 2, p) != p - 1) ++n;
  ll x = modpow(a, (s + 1) / 2, p);
  ll b = modpow(a, s, p), g = modpow(n, s, p);
  for (;; r = m) {
    ll t = b;
    for (m = 0; m < r && t != 1; ++m) t = t * t % p;
    if (m == 0) return x;
    ll gs = modpow(g, 1LL << (r - m - 1), p);
    g = gs * gs % p;
    x = x * gs % p;
    b = b * g % p;
  }
}
Back to top page