This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub AlexanderNekrasov/Youthful-Passion-Fruit-teambook
/**
* Author: talant(KAN)
* Date: 2024-08-9
* Description: Simplex
* Time: exponential XD(ok for 200-300 variables/bounds)
*/
/* solver for linear programs of the form
maximize c^T x, subject to A x <= b, x >= 0
outputs target function for optimal solution and
the solution by reference
if unbounded above : returns inf, if infeasible : returns -inf
create Simplex_Steep <ld > LP(A, b, c), then call LP. Solve (x)
*/
template <typename DOUBLE>
struct Simplex_Steep {
using VD = vector<DOUBLE>;
using VVD = vector<VD>;
using VI = vector<int>;
DOUBLE EPS = 1e-12;
int m, n;
VI B, N;
VVD D;
Simplex_Steep(const VVD &A, const VD &b, const VD &c)
: m(b.size()), n(c.size()), B(m), N(n + 1), D(m + 2, VD(n + 2)) {
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++) D[i][j] = A[i][j];
for (int i = 0; i < m; i++) {
B[i] = n + i;
D[i][n] = -1;
D[i][n + 1] = b[i];
}
for (int j = 0; j < n; j++) {
N[j] = j;
D[m][j] = -c[j];
}
N[n] = -1;
D[m + 1][n] = 1;
}
void Pivot(int r, int s) {
for (int i = 0; i < m + 2; i++)
if (i != r)
for (int j = 0; j < n + 2; j++)
if (j != s) D[i][j] -= D[r][j] * D[i][s] / D[r][s];
for (int j = 0; j < n + 2; j++)
if (j != s) D[r][j] /= D[r][s];
for (int i = 0; i < m + 2; i++)
if (i != r) D[i][s] /= -D[r][s];
D[r][s] = 1.0 / D[r][s];
swap(B[r], N[s]);
}
bool Simplex(int phase) {
int x = m + (int)(phase == 1);
while (true) {
int s = -1;
DOUBLE c_val = -1;
for (int j = 0; j <= n; j++) {
if (phase == 2 && N[j] == -1) continue;
DOUBLE norm_sq = 0;
for (int k = 0; k <= m; k++) norm_sq += D[k][j] * D[k][j];
norm_sq = max(norm_sq, EPS);
DOUBLE c_val_j = D[x][j] / sqrtl(norm_sq);
if (s == -1 || c_val_j < c_val ||
(c_val == c_val_j && N[j] < N[s])) {
s = j;
c_val = c_val_j;
}
}
if (D[x][s] >= -EPS) return true;
int r = -1;
for (int i = 0; i < m; i++) {
if (D[i][s] <= EPS) continue;
if (r == -1 || D[i][n + 1] / D[i][s] < D[r][n + 1] / D[r][s] ||
(D[i][n + 1] / D[i][s] == D[r][n + 1] / D[r][s] &&
B[i] < B[r]))
r = i;
}
if (r == -1) return false;
Pivot(r, s);
}
}
DOUBLE Solve(VD &x) {
int r = 0;
for (int i = 1; i < m; i++)
if (D[i][n + 1] < D[r][n + 1]) r = i;
if (D[r][n + 1] <= -EPS) {
Pivot(r, n);
if (!Simplex(1) || D[m + 1][n + 1] < -EPS)
return -numeric_limits<DOUBLE>::infinity();
for (int i = 0; i < m; i++)
if (B[i] == -1) {
int s = -1;
for (int j = 0; j <= n; j++)
if (s == -1 || D[i][j] < D[i][s] ||
(D[i][j] == D[i][s] && N[j] < N[s]))
s = j;
Pivot(i, s);
}
}
if (!Simplex(2)) return numeric_limits<DOUBLE>::infinity();
x = VD(n);
for (int i = 0; i < m; i++)
if (B[i] < n) x[B[i]] = D[i][n + 1];
return D[m][n + 1];
}
};
#line 1 "math/Simplex.cpp"
/**
* Author: talant(KAN)
* Date: 2024-08-9
* Description: Simplex
* Time: exponential XD(ok for 200-300 variables/bounds)
*/
/* solver for linear programs of the form
maximize c^T x, subject to A x <= b, x >= 0
outputs target function for optimal solution and
the solution by reference
if unbounded above : returns inf, if infeasible : returns -inf
create Simplex_Steep <ld > LP(A, b, c), then call LP. Solve (x)
*/
template <typename DOUBLE>
struct Simplex_Steep {
using VD = vector<DOUBLE>;
using VVD = vector<VD>;
using VI = vector<int>;
DOUBLE EPS = 1e-12;
int m, n;
VI B, N;
VVD D;
Simplex_Steep(const VVD &A, const VD &b, const VD &c)
: m(b.size()), n(c.size()), B(m), N(n + 1), D(m + 2, VD(n + 2)) {
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++) D[i][j] = A[i][j];
for (int i = 0; i < m; i++) {
B[i] = n + i;
D[i][n] = -1;
D[i][n + 1] = b[i];
}
for (int j = 0; j < n; j++) {
N[j] = j;
D[m][j] = -c[j];
}
N[n] = -1;
D[m + 1][n] = 1;
}
void Pivot(int r, int s) {
for (int i = 0; i < m + 2; i++)
if (i != r)
for (int j = 0; j < n + 2; j++)
if (j != s) D[i][j] -= D[r][j] * D[i][s] / D[r][s];
for (int j = 0; j < n + 2; j++)
if (j != s) D[r][j] /= D[r][s];
for (int i = 0; i < m + 2; i++)
if (i != r) D[i][s] /= -D[r][s];
D[r][s] = 1.0 / D[r][s];
swap(B[r], N[s]);
}
bool Simplex(int phase) {
int x = m + (int)(phase == 1);
while (true) {
int s = -1;
DOUBLE c_val = -1;
for (int j = 0; j <= n; j++) {
if (phase == 2 && N[j] == -1) continue;
DOUBLE norm_sq = 0;
for (int k = 0; k <= m; k++) norm_sq += D[k][j] * D[k][j];
norm_sq = max(norm_sq, EPS);
DOUBLE c_val_j = D[x][j] / sqrtl(norm_sq);
if (s == -1 || c_val_j < c_val ||
(c_val == c_val_j && N[j] < N[s])) {
s = j;
c_val = c_val_j;
}
}
if (D[x][s] >= -EPS) return true;
int r = -1;
for (int i = 0; i < m; i++) {
if (D[i][s] <= EPS) continue;
if (r == -1 || D[i][n + 1] / D[i][s] < D[r][n + 1] / D[r][s] ||
(D[i][n + 1] / D[i][s] == D[r][n + 1] / D[r][s] &&
B[i] < B[r]))
r = i;
}
if (r == -1) return false;
Pivot(r, s);
}
}
DOUBLE Solve(VD &x) {
int r = 0;
for (int i = 1; i < m; i++)
if (D[i][n + 1] < D[r][n + 1]) r = i;
if (D[r][n + 1] <= -EPS) {
Pivot(r, n);
if (!Simplex(1) || D[m + 1][n + 1] < -EPS)
return -numeric_limits<DOUBLE>::infinity();
for (int i = 0; i < m; i++)
if (B[i] == -1) {
int s = -1;
for (int j = 0; j <= n; j++)
if (s == -1 || D[i][j] < D[i][s] ||
(D[i][j] == D[i][s] && N[j] < N[s]))
s = j;
Pivot(i, s);
}
}
if (!Simplex(2)) return numeric_limits<DOUBLE>::infinity();
x = VD(n);
for (int i = 0; i < m; i++)
if (B[i] < n) x[B[i]] = D[i][n + 1];
return D[m][n + 1];
}
};