This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub AlexanderNekrasov/Youthful-Passion-Fruit-teambook
/** * Author: talant(KAN) * Date: 2024-08-9 * Description: Simplex * Time: exponential XD(ok for 200-300 variables/bounds) */ /* solver for linear programs of the form maximize c^T x, subject to A x <= b, x >= 0 outputs target function for optimal solution and the solution by reference if unbounded above : returns inf, if infeasible : returns -inf create Simplex_Steep <ld > LP(A, b, c), then call LP. Solve (x) */ template <typename DOUBLE> struct Simplex_Steep { using VD = vector<DOUBLE>; using VVD = vector<VD>; using VI = vector<int>; DOUBLE EPS = 1e-12; int m, n; VI B, N; VVD D; Simplex_Steep(const VVD &A, const VD &b, const VD &c) : m(b.size()), n(c.size()), B(m), N(n + 1), D(m + 2, VD(n + 2)) { for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) D[i][j] = A[i][j]; for (int i = 0; i < m; i++) { B[i] = n + i; D[i][n] = -1; D[i][n + 1] = b[i]; } for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; } N[n] = -1; D[m + 1][n] = 1; } void Pivot(int r, int s) { for (int i = 0; i < m + 2; i++) if (i != r) for (int j = 0; j < n + 2; j++) if (j != s) D[i][j] -= D[r][j] * D[i][s] / D[r][s]; for (int j = 0; j < n + 2; j++) if (j != s) D[r][j] /= D[r][s]; for (int i = 0; i < m + 2; i++) if (i != r) D[i][s] /= -D[r][s]; D[r][s] = 1.0 / D[r][s]; swap(B[r], N[s]); } bool Simplex(int phase) { int x = m + (int)(phase == 1); while (true) { int s = -1; DOUBLE c_val = -1; for (int j = 0; j <= n; j++) { if (phase == 2 && N[j] == -1) continue; DOUBLE norm_sq = 0; for (int k = 0; k <= m; k++) norm_sq += D[k][j] * D[k][j]; norm_sq = max(norm_sq, EPS); DOUBLE c_val_j = D[x][j] / sqrtl(norm_sq); if (s == -1 || c_val_j < c_val || (c_val == c_val_j && N[j] < N[s])) { s = j; c_val = c_val_j; } } if (D[x][s] >= -EPS) return true; int r = -1; for (int i = 0; i < m; i++) { if (D[i][s] <= EPS) continue; if (r == -1 || D[i][n + 1] / D[i][s] < D[r][n + 1] / D[r][s] || (D[i][n + 1] / D[i][s] == D[r][n + 1] / D[r][s] && B[i] < B[r])) r = i; } if (r == -1) return false; Pivot(r, s); } } DOUBLE Solve(VD &x) { int r = 0; for (int i = 1; i < m; i++) if (D[i][n + 1] < D[r][n + 1]) r = i; if (D[r][n + 1] <= -EPS) { Pivot(r, n); if (!Simplex(1) || D[m + 1][n + 1] < -EPS) return -numeric_limits<DOUBLE>::infinity(); for (int i = 0; i < m; i++) if (B[i] == -1) { int s = -1; for (int j = 0; j <= n; j++) if (s == -1 || D[i][j] < D[i][s] || (D[i][j] == D[i][s] && N[j] < N[s])) s = j; Pivot(i, s); } } if (!Simplex(2)) return numeric_limits<DOUBLE>::infinity(); x = VD(n); for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n + 1]; return D[m][n + 1]; } };
#line 1 "math/Simplex.cpp" /** * Author: talant(KAN) * Date: 2024-08-9 * Description: Simplex * Time: exponential XD(ok for 200-300 variables/bounds) */ /* solver for linear programs of the form maximize c^T x, subject to A x <= b, x >= 0 outputs target function for optimal solution and the solution by reference if unbounded above : returns inf, if infeasible : returns -inf create Simplex_Steep <ld > LP(A, b, c), then call LP. Solve (x) */ template <typename DOUBLE> struct Simplex_Steep { using VD = vector<DOUBLE>; using VVD = vector<VD>; using VI = vector<int>; DOUBLE EPS = 1e-12; int m, n; VI B, N; VVD D; Simplex_Steep(const VVD &A, const VD &b, const VD &c) : m(b.size()), n(c.size()), B(m), N(n + 1), D(m + 2, VD(n + 2)) { for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) D[i][j] = A[i][j]; for (int i = 0; i < m; i++) { B[i] = n + i; D[i][n] = -1; D[i][n + 1] = b[i]; } for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; } N[n] = -1; D[m + 1][n] = 1; } void Pivot(int r, int s) { for (int i = 0; i < m + 2; i++) if (i != r) for (int j = 0; j < n + 2; j++) if (j != s) D[i][j] -= D[r][j] * D[i][s] / D[r][s]; for (int j = 0; j < n + 2; j++) if (j != s) D[r][j] /= D[r][s]; for (int i = 0; i < m + 2; i++) if (i != r) D[i][s] /= -D[r][s]; D[r][s] = 1.0 / D[r][s]; swap(B[r], N[s]); } bool Simplex(int phase) { int x = m + (int)(phase == 1); while (true) { int s = -1; DOUBLE c_val = -1; for (int j = 0; j <= n; j++) { if (phase == 2 && N[j] == -1) continue; DOUBLE norm_sq = 0; for (int k = 0; k <= m; k++) norm_sq += D[k][j] * D[k][j]; norm_sq = max(norm_sq, EPS); DOUBLE c_val_j = D[x][j] / sqrtl(norm_sq); if (s == -1 || c_val_j < c_val || (c_val == c_val_j && N[j] < N[s])) { s = j; c_val = c_val_j; } } if (D[x][s] >= -EPS) return true; int r = -1; for (int i = 0; i < m; i++) { if (D[i][s] <= EPS) continue; if (r == -1 || D[i][n + 1] / D[i][s] < D[r][n + 1] / D[r][s] || (D[i][n + 1] / D[i][s] == D[r][n + 1] / D[r][s] && B[i] < B[r])) r = i; } if (r == -1) return false; Pivot(r, s); } } DOUBLE Solve(VD &x) { int r = 0; for (int i = 1; i < m; i++) if (D[i][n + 1] < D[r][n + 1]) r = i; if (D[r][n + 1] <= -EPS) { Pivot(r, n); if (!Simplex(1) || D[m + 1][n + 1] < -EPS) return -numeric_limits<DOUBLE>::infinity(); for (int i = 0; i < m; i++) if (B[i] == -1) { int s = -1; for (int j = 0; j <= n; j++) if (s == -1 || D[i][j] < D[i][s] || (D[i][j] == D[i][s] && N[j] < N[s])) s = j; Pivot(i, s); } } if (!Simplex(2)) return numeric_limits<DOUBLE>::infinity(); x = VD(n); for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n + 1]; return D[m][n + 1]; } };