This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub AlexanderNekrasov/Youthful-Passion-Fruit-teambook
/** * Author: alexxela12345,daubi,talant * Date: 2024-08-03 * Description: Geometry intersections */ bool isCrossed(ld lx, ld rx, ld ly, ld ry) { if (lx > rx) swap(lx, rx); if (ly > ry) swap(ly, ry); return sign(min(rx, ry) - max(lx, ly)) >= 0; } // if two segments [a, b] and [c, d] has AT LEAST one common point -> true bool intersects(const point &a, const point &b, const point &c, const point &d) { if (!isCrossed(a.x, b.x, c.x, d.x)) return false; if (!isCrossed(a.y, b.y, c.y, d.y)) return false; if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0; if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0; return 1; } //intersecting lines bool intersect(line l, line m, point &I) { ld d = l.b * m.a - m.b * l.a; if (sign(d) == 0) { return false; } ld dx = m.b * l.c - m.c * l.b; ld dy = m.c * l.a - l.c * m.a; I = {dx / d, dy / d}; return true; } //intersecting circles int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) { if (r1 < r2) { swap(o1, o2); swap(r1, r2); } if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) { return 3; } ld ln = len(o1 - o2); if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) { return 0; } ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln; vec v = norm(o2 - o1); point a = o1 + v * d; if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) { i1 = a; return 1; } v = ort(v) * sqrt(sq(r1) - sq(d)); i1 = a + v; i2 = a - v; return 2; } //intersecting line and circle, line should be normed int intersect(point o, ld r, line l, point &i1, point &i2) { ld len = abs(l.eval(o)); int sgn = sign(len - r); if (sgn == 1) { return 0; } vec v = norm(vec{l.a, l.b}) * len; if (sign(l.eval(o + v)) != 0) { v = vec{0, 0} - v; } point a = o + v; if (sgn == 0) { i1 = a; return 1; } v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len)); i1 = a + v; i2 = a - v; return 2; }
#line 1 "geometry/Intersections.cpp" /** * Author: alexxela12345,daubi,talant * Date: 2024-08-03 * Description: Geometry intersections */ bool isCrossed(ld lx, ld rx, ld ly, ld ry) { if (lx > rx) swap(lx, rx); if (ly > ry) swap(ly, ry); return sign(min(rx, ry) - max(lx, ly)) >= 0; } // if two segments [a, b] and [c, d] has AT LEAST one common point -> true bool intersects(const point &a, const point &b, const point &c, const point &d) { if (!isCrossed(a.x, b.x, c.x, d.x)) return false; if (!isCrossed(a.y, b.y, c.y, d.y)) return false; if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0; if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0; return 1; } //intersecting lines bool intersect(line l, line m, point &I) { ld d = l.b * m.a - m.b * l.a; if (sign(d) == 0) { return false; } ld dx = m.b * l.c - m.c * l.b; ld dy = m.c * l.a - l.c * m.a; I = {dx / d, dy / d}; return true; } //intersecting circles int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) { if (r1 < r2) { swap(o1, o2); swap(r1, r2); } if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) { return 3; } ld ln = len(o1 - o2); if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) { return 0; } ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln; vec v = norm(o2 - o1); point a = o1 + v * d; if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) { i1 = a; return 1; } v = ort(v) * sqrt(sq(r1) - sq(d)); i1 = a + v; i2 = a - v; return 2; } //intersecting line and circle, line should be normed int intersect(point o, ld r, line l, point &i1, point &i2) { ld len = abs(l.eval(o)); int sgn = sign(len - r); if (sgn == 1) { return 0; } vec v = norm(vec{l.a, l.b}) * len; if (sign(l.eval(o + v)) != 0) { v = vec{0, 0} - v; } point a = o + v; if (sgn == 0) { i1 = a; return 1; } v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len)); i1 = a + v; i2 = a - v; return 2; }