This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub AlexanderNekrasov/Youthful-Passion-Fruit-teambook
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_C" #define ERROR 0.000001 #define main main2 #include "../../contest/template.cpp" #undef main #include "../../geometry/Point.cpp" #include "../../geometry/Line.cpp" #include "../../geometry/Intersections.cpp" #include "../../geometry/HalfPlaneIntersection.cpp" signed main() { cin.tie(0)->sync_with_stdio(0); cout.precision(20), cout.setf(ios::fixed); int n; cin >> n; vector<vec> arr(n); for (auto &el : arr) { cin >> el.x >> el.y; } vector<line> lines; for (int i = 0; i < n; ++i) { lines.push_back(getln(arr[i], arr[(i + 1) % n])); } int q; cin >> q; while (q--) { vec v1, v2; cin >> v1.x >> v1.y; cin >> v2.x >> v2.y; line l = getln(v1, v2); auto lines2 = lines; lines2.push_back(l); auto p = hpi(lines2); ld res = 0; for (int i = 0; i < (int) p.size(); ++i) { res += p[i] % p[(i + 1) % p.size()]; } res /= 2; cout << res << '\n'; } }
#line 1 "verify/geometry/aoj-cgl-4-c.test.cpp" #define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_C" #define ERROR 0.000001 #define main main2 #line 1 "contest/template.cpp" #ifdef LOCAL #define _GLIBCXX_DEBUG #endif #include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using ull = unsigned long long; #define pbc push_back #define mp make_pair #define all(v) (v).begin(), (v).end() #define vin(v) for (auto &el : a) cin >> el mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count()); template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) { if (y < x) { x = y; } } template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) { if (x < y) { x = y; } } void solve() { } signed main() { cin.tie(0)->sync_with_stdio(0); cout.precision(20), cout.setf(ios::fixed); int t = 1; // cin >> t; while (t--) { solve(); } } #line 6 "verify/geometry/aoj-cgl-4-c.test.cpp" #undef main #line 1 "geometry/Point.cpp" /** * Author: alexxela12345,daubi,talant * Date: 2024-08-03 * Description: struct Point */ const ld EPS = 1e-7; ld sq(ld x) { return x * x; } int sign(ld x) { if (x < -EPS) { return -1; } if (x > EPS) { return 1; } return 0; } #define vec point struct point {//% - cross, * - dot ld x, y; auto operator<=>(const point&) const = default; }; ld operator*(const point &a, const point &b) { return a.x * b.x + a.y * b.y; } ld operator%(const point &a, const point &b) { return a.x * b.y - a.y * b.x; } point operator-(const point &a, const point &b) { return {a.x - b.x, a.y - b.y}; } point operator+(const point &a, const point &b) { return {a.x + b.x, a.y + b.y}; } point operator*(const point &a, ld b) { return {a.x * b, a.y * b}; } point operator/(const point &a, ld b) { return {a.x / b, a.y / b}; } bool operator<(const point &a, const point &b) { if (sign(a.y - b.y) != 0) { return a.y < b.y; } else if (sign(a.x - b.x) != 0) { return a.x < b.x; } return 0; } ld len2(const point &a) { return sq(a.x) + sq(a.y); } ld len(const point &a) { return sqrt(len2(a)); } point norm(point a) { return a / len(a); } int half(point a) { return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0)); } point ort(point a) { return {-a.y, a.x}; } point turn(point a, ld ang) { return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)}; } ld getAngle(point &a, point &b) { return atan2(a % b, a * b); } bool cmpHalf(const point &a, const point &b) { if (half(a) != half(b)) { return half(b); } else { int sgn = sign(a % b); if (!sgn) { return len2(a) < len2(b); } else { return sgn == 1; } } } #line 1 "geometry/Line.cpp" /** * Author: alexxela12345,daubi,talant * Date: 2024-08-03 * Description: struct Line */ struct line { ld a, b, c; void norm() { // for half planes ld d = len({a, b}); assert(sign(d) > 0); a /= d; b /= d; c /= d; } ld eval(point p) const { return a * p.x + b * p.y + c; } bool isIn(point p) const { return sign(eval(p)) >= 0; } bool operator==(const line &other) const { return sign(a * other.b - b * other.a) == 0 && sign(a * other.c - c * other.a) == 0 && sign(b * other.c - c * other.b) == 0; } }; line getln(point a, point b) { line res; res.a = a.y - b.y; res.b = b.x - a.x; res.c = -(res.a * a.x + res.b * a.y); res.norm(); return res; } #line 1 "geometry/Intersections.cpp" /** * Author: alexxela12345,daubi,talant * Date: 2024-08-03 * Description: Geometry intersections */ bool isCrossed(ld lx, ld rx, ld ly, ld ry) { if (lx > rx) swap(lx, rx); if (ly > ry) swap(ly, ry); return sign(min(rx, ry) - max(lx, ly)) >= 0; } // if two segments [a, b] and [c, d] has AT LEAST one common point -> true bool intersects(const point &a, const point &b, const point &c, const point &d) { if (!isCrossed(a.x, b.x, c.x, d.x)) return false; if (!isCrossed(a.y, b.y, c.y, d.y)) return false; if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0; if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0; return 1; } //intersecting lines bool intersect(line l, line m, point &I) { ld d = l.b * m.a - m.b * l.a; if (sign(d) == 0) { return false; } ld dx = m.b * l.c - m.c * l.b; ld dy = m.c * l.a - l.c * m.a; I = {dx / d, dy / d}; return true; } //intersecting circles int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) { if (r1 < r2) { swap(o1, o2); swap(r1, r2); } if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) { return 3; } ld ln = len(o1 - o2); if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) { return 0; } ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln; vec v = norm(o2 - o1); point a = o1 + v * d; if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) { i1 = a; return 1; } v = ort(v) * sqrt(sq(r1) - sq(d)); i1 = a + v; i2 = a - v; return 2; } //intersecting line and circle, line should be normed int intersect(point o, ld r, line l, point &i1, point &i2) { ld len = abs(l.eval(o)); int sgn = sign(len - r); if (sgn == 1) { return 0; } vec v = norm(vec{l.a, l.b}) * len; if (sign(l.eval(o + v)) != 0) { v = vec{0, 0} - v; } point a = o + v; if (sgn == 0) { i1 = a; return 1; } v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len)); i1 = a + v; i2 = a - v; return 2; } #line 1 "geometry/HalfPlaneIntersection.cpp" /** * Author: Igor Markelov (stole from Red Panda teambook) * Date: 2022-11-05 * Description: Find the intersection of the half planes. * Time: O(n \log(n)) */ vec getPoint(line l) { return {-l.b, l.a}; } bool bad(line a, line b, line c) { point x; assert(intersect(b, c, x) == 1); return a.eval(x) < 0; } // Do not forget about the bounding box vector<point> hpi(vector<line> lines) { sort(all(lines), [](line al, line bl) -> bool { point a = getPoint(al); point b = getPoint(bl); if (half(a) != half(b)) { return half(a) < half(b); } return a % b > 0; }); vector<pair<line, int>> st; for (int it = 0; it < 2; it++) { for (int i = 0; i < (int)lines.size(); i++) { bool flag = false; while (!st.empty()) { if (len(getPoint(st.back().first) - getPoint(lines[i])) < EPS) { if (lines[i].c >= st.back().first.c) { flag = true; break; } else { st.pop_back(); } } else if (getPoint(st.back().first) % getPoint(lines[i]) < EPS / 2) { return {}; } else if (st.size() >= 2 && bad(st[st.size() - 2].first, st[st.size() - 1].first, lines[i])) { st.pop_back(); } else { break; } } if (!flag) st.push_back({lines[i], i}); } } vector<int> en(lines.size(), -1); vector<point> ans; for (int i = 0; i < (int)st.size(); i++) { if (en[st[i].second] == -1) { en[st[i].second] = i; continue; } for (int j = en[st[i].second]; j < i; j++) { point I; assert(intersect(st[j].first, st[j + 1].first, I) == 1); ans.push_back(I); } break; } return ans; } #line 12 "verify/geometry/aoj-cgl-4-c.test.cpp" signed main() { cin.tie(0)->sync_with_stdio(0); cout.precision(20), cout.setf(ios::fixed); int n; cin >> n; vector<vec> arr(n); for (auto &el : arr) { cin >> el.x >> el.y; } vector<line> lines; for (int i = 0; i < n; ++i) { lines.push_back(getln(arr[i], arr[(i + 1) % n])); } int q; cin >> q; while (q--) { vec v1, v2; cin >> v1.x >> v1.y; cin >> v2.x >> v2.y; line l = getln(v1, v2); auto lines2 = lines; lines2.push_back(l); auto p = hpi(lines2); ld res = 0; for (int i = 0; i < (int) p.size(); ++i) { res += p[i] % p[(i + 1) % p.size()]; } res /= 2; cout << res << '\n'; } }