Youthful-Passion-Fruit-teambook

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub AlexanderNekrasov/Youthful-Passion-Fruit-teambook

:heavy_check_mark: verify/geometry/aoj-cgl-4-c.test.cpp

Depends on

Code

#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_C"
#define ERROR 0.000001

#define main main2
#include "../../contest/template.cpp"
#undef main

#include "../../geometry/Point.cpp"
#include "../../geometry/Line.cpp"
#include "../../geometry/Intersections.cpp"
#include "../../geometry/HalfPlaneIntersection.cpp"

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);

    int n;
    cin >> n;
    vector<vec> arr(n);
    for (auto &el : arr) {
        cin >> el.x >> el.y;
    }
    vector<line> lines;
    for (int i = 0; i < n; ++i) {
        lines.push_back(getln(arr[i], arr[(i + 1) % n]));
    }
    int q;
    cin >> q;
    while (q--) {
        vec v1, v2;
        cin >> v1.x >> v1.y;
        cin >> v2.x >> v2.y;
        line l = getln(v1, v2);
        auto lines2 = lines;
        lines2.push_back(l);
        auto p = hpi(lines2);
        ld res = 0;
        for (int i = 0; i < (int) p.size(); ++i) {
            res += p[i] % p[(i + 1) % p.size()];
        }
        res /= 2;
        cout << res << '\n';
    }
}
#line 1 "verify/geometry/aoj-cgl-4-c.test.cpp"
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_C"
#define ERROR 0.000001

#define main main2
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#include <bits/stdc++.h>
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 6 "verify/geometry/aoj-cgl-4-c.test.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 1 "geometry/Intersections.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: Geometry intersections
 */

bool isCrossed(ld lx, ld rx, ld ly, ld ry) {
    if (lx > rx)
        swap(lx, rx);
    if (ly > ry)
        swap(ly, ry);
    return sign(min(rx, ry) - max(lx, ly)) >= 0;
}

// if two segments [a, b] and [c, d] has AT LEAST one common point -> true
bool intersects(const point &a, const point &b, const point &c, const point &d) {
    if (!isCrossed(a.x, b.x, c.x, d.x))
        return false;
    if (!isCrossed(a.y, b.y, c.y, d.y))
        return false;
    if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0;
    if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0;
    return 1;
}
//intersecting lines
bool intersect(line l, line m, point &I) {
    ld d = l.b * m.a - m.b * l.a;
    if (sign(d) == 0) {
        return false;
    }
    ld dx = m.b * l.c - m.c * l.b;
    ld dy = m.c * l.a - l.c * m.a;
    I = {dx / d, dy / d};
    return true;
}
//intersecting circles
int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) {
    if (r1 < r2) {
        swap(o1, o2);
        swap(r1, r2);
    }
    if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) {
        return 3;
    }
    ld ln = len(o1 - o2);
    if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) {
        return 0;
    }
    ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln;
    vec v = norm(o2 - o1);
    point a = o1 + v * d;
    if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) {
        i1 = a;
        return 1;
    }
    v = ort(v) * sqrt(sq(r1) - sq(d));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
//intersecting line and circle, line should be normed
int intersect(point o, ld r, line l, point &i1, point &i2) {
    ld len = abs(l.eval(o));
    int sgn = sign(len - r);
    if (sgn == 1) {
        return 0;
    }
    vec v = norm(vec{l.a, l.b}) * len;
    if (sign(l.eval(o + v)) != 0) {
        v = vec{0, 0} - v;
    }
    point a = o + v;
    if (sgn == 0) {
        i1 = a;
        return 1;
    }
    v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
#line 1 "geometry/HalfPlaneIntersection.cpp"
/**
 * Author: Igor Markelov (stole from Red Panda teambook)
 * Date: 2022-11-05
 * Description: Find the intersection of the half planes.
 * Time: O(n \log(n))
 */
vec getPoint(line l) { return {-l.b, l.a}; }

bool bad(line a, line b, line c) {
    point x;
    assert(intersect(b, c, x) == 1);
    return a.eval(x) < 0;
}

// Do not forget about the bounding box
vector<point> hpi(vector<line> lines) {
    sort(all(lines), [](line al, line bl) -> bool {
        point a = getPoint(al);
        point b = getPoint(bl);
        if (half(a) != half(b)) {
            return half(a) < half(b);
        }
        return a % b > 0;
    });

    vector<pair<line, int>> st;
    for (int it = 0; it < 2; it++) {
        for (int i = 0; i < (int)lines.size(); i++) {
            bool flag = false;
            while (!st.empty()) {
                if (len(getPoint(st.back().first) - getPoint(lines[i])) < EPS) {
                    if (lines[i].c >= st.back().first.c) {
                        flag = true;
                        break;
                    } else {
                        st.pop_back();
                    }
                } else if (getPoint(st.back().first) % getPoint(lines[i]) < EPS / 2) {
                    return {};
                } else if (st.size() >= 2 &&
                           bad(st[st.size() - 2].first, st[st.size() - 1].first,
                               lines[i])) {
                    st.pop_back();
                } else {
                    break;
                }
            }
            if (!flag)
                st.push_back({lines[i], i});
        }
    }

    vector<int> en(lines.size(), -1);
    vector<point> ans;
    for (int i = 0; i < (int)st.size(); i++) {
        if (en[st[i].second] == -1) {
            en[st[i].second] = i;
            continue;
        }
        for (int j = en[st[i].second]; j < i; j++) {
            point I;
            assert(intersect(st[j].first, st[j + 1].first, I) == 1);
            ans.push_back(I);
        }
        break;
    }
    return ans;
}
#line 12 "verify/geometry/aoj-cgl-4-c.test.cpp"

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);

    int n;
    cin >> n;
    vector<vec> arr(n);
    for (auto &el : arr) {
        cin >> el.x >> el.y;
    }
    vector<line> lines;
    for (int i = 0; i < n; ++i) {
        lines.push_back(getln(arr[i], arr[(i + 1) % n]));
    }
    int q;
    cin >> q;
    while (q--) {
        vec v1, v2;
        cin >> v1.x >> v1.y;
        cin >> v2.x >> v2.y;
        line l = getln(v1, v2);
        auto lines2 = lines;
        lines2.push_back(l);
        auto p = hpi(lines2);
        ld res = 0;
        for (int i = 0; i < (int) p.size(); ++i) {
            res += p[i] % p[(i + 1) % p.size()];
        }
        res /= 2;
        cout << res << '\n';
    }
}
Back to top page