This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub AlexanderNekrasov/Youthful-Passion-Fruit-teambook
// Yandex Algo 2023-2024. C. Геометрия 2 D - Площадь многоугольника // https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55063 #define main main228 #include "../../../contest/template.cpp" #undef main #include "../../../geometry/Point.cpp" #include "../../../geometry/Line.cpp" #include "../../../geometry/Tangents.cpp" #include "../../../geometry/Intersections.cpp" signed main() { cin.tie(0)->sync_with_stdio(0); cout.precision(20), cout.setf(ios::fixed); int n; cin >> n; vector<point> p(n); for (auto& [x, y] : p) { cin >> x >> y; } ld ans = 0; for (int i = 0; i < n; ++i) { ans += p[i] % p[(i + 1) % n]; } ans = abs(ans) / 2; cout << (ll)(ans) << (sign(ans - (ll)ans) == 1 ? ".5" : "") << endl; }
#line 1 "verify/geometry/igor-tests/13.cpp" // Yandex Algo 2023-2024. C. Геометрия 2 D - Площадь многоугольника // https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55063 #define main main228 #line 1 "contest/template.cpp" #ifdef LOCAL #define _GLIBCXX_DEBUG #endif #include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using ull = unsigned long long; #define pbc push_back #define mp make_pair #define all(v) (v).begin(), (v).end() #define vin(v) for (auto &el : a) cin >> el mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count()); template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) { if (y < x) { x = y; } } template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) { if (x < y) { x = y; } } void solve() { } signed main() { cin.tie(0)->sync_with_stdio(0); cout.precision(20), cout.setf(ios::fixed); int t = 1; // cin >> t; while (t--) { solve(); } } #line 5 "verify/geometry/igor-tests/13.cpp" #undef main #line 1 "geometry/Point.cpp" /** * Author: alexxela12345,daubi,talant * Date: 2024-08-03 * Description: struct Point */ const ld EPS = 1e-7; ld sq(ld x) { return x * x; } int sign(ld x) { if (x < -EPS) { return -1; } if (x > EPS) { return 1; } return 0; } #define vec point struct point {//% - cross, * - dot ld x, y; auto operator<=>(const point&) const = default; }; ld operator*(const point &a, const point &b) { return a.x * b.x + a.y * b.y; } ld operator%(const point &a, const point &b) { return a.x * b.y - a.y * b.x; } point operator-(const point &a, const point &b) { return {a.x - b.x, a.y - b.y}; } point operator+(const point &a, const point &b) { return {a.x + b.x, a.y + b.y}; } point operator*(const point &a, ld b) { return {a.x * b, a.y * b}; } point operator/(const point &a, ld b) { return {a.x / b, a.y / b}; } bool operator<(const point &a, const point &b) { if (sign(a.y - b.y) != 0) { return a.y < b.y; } else if (sign(a.x - b.x) != 0) { return a.x < b.x; } return 0; } ld len2(const point &a) { return sq(a.x) + sq(a.y); } ld len(const point &a) { return sqrt(len2(a)); } point norm(point a) { return a / len(a); } int half(point a) { return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0)); } point ort(point a) { return {-a.y, a.x}; } point turn(point a, ld ang) { return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)}; } ld getAngle(point &a, point &b) { return atan2(a % b, a * b); } bool cmpHalf(const point &a, const point &b) { if (half(a) != half(b)) { return half(b); } else { int sgn = sign(a % b); if (!sgn) { return len2(a) < len2(b); } else { return sgn == 1; } } } #line 1 "geometry/Line.cpp" /** * Author: alexxela12345,daubi,talant * Date: 2024-08-03 * Description: struct Line */ struct line { ld a, b, c; void norm() { // for half planes ld d = len({a, b}); assert(sign(d) > 0); a /= d; b /= d; c /= d; } ld eval(point p) const { return a * p.x + b * p.y + c; } bool isIn(point p) const { return sign(eval(p)) >= 0; } bool operator==(const line &other) const { return sign(a * other.b - b * other.a) == 0 && sign(a * other.c - c * other.a) == 0 && sign(b * other.c - c * other.b) == 0; } }; line getln(point a, point b) { line res; res.a = a.y - b.y; res.b = b.x - a.x; res.c = -(res.a * a.x + res.b * a.y); res.norm(); return res; } #line 1 "geometry/Tangents.cpp" /** * Author: Igor Markelov * Date: 2022-11-18 * Description: Tangents to circles. */ // tangents from point to circle int tangents(point &o, ld r, point &p, point &i1, point &i2) { ld ln = len(o - p); int sgn = sign(ln - r); if (sgn == -1) { return 0; } else if (sgn == 0) { i1 = p; return 1; } else { ld x = sq(r) / ln; vec v = norm(p - o) * x; point a = o + v; v = ort(norm(p - o)) * sqrt(sq(r) - sq(x)); i1 = a + v; i2 = a - v; return 2; } } void _tangents(point c, ld r1, ld r2, vector<line> &ans) { ld r = r2 - r1; ld z = sq(c.x) + sq(c.y); ld d = z - sq(r); if (sign(d) == -1) return; d = sqrt(abs(d)); line l; l.a = (c.x * r + c.y * d) / z; l.b = (c.y * r - c.x * d) / z; l.c = r1; ans.push_back(l); } // tangents between two circles vector<line> tangents(point o1, ld r1, point o2, ld r2) { vector<line> ans; for (int i = -1; i <= 1; i += 2) for (int j = -1; j <= 1; j += 2) _tangents(o2 - o1, r1 * i, r2 * j, ans); for (int i = 0; i < (int)ans.size(); ++i) ans[i].c -= ans[i].a * o1.x + ans[i].b * o1.y; return ans; } #line 1 "geometry/Intersections.cpp" /** * Author: alexxela12345,daubi,talant * Date: 2024-08-03 * Description: Geometry intersections */ bool isCrossed(ld lx, ld rx, ld ly, ld ry) { if (lx > rx) swap(lx, rx); if (ly > ry) swap(ly, ry); return sign(min(rx, ry) - max(lx, ly)) >= 0; } // if two segments [a, b] and [c, d] has AT LEAST one common point -> true bool intersects(const point &a, const point &b, const point &c, const point &d) { if (!isCrossed(a.x, b.x, c.x, d.x)) return false; if (!isCrossed(a.y, b.y, c.y, d.y)) return false; if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0; if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0; return 1; } //intersecting lines bool intersect(line l, line m, point &I) { ld d = l.b * m.a - m.b * l.a; if (sign(d) == 0) { return false; } ld dx = m.b * l.c - m.c * l.b; ld dy = m.c * l.a - l.c * m.a; I = {dx / d, dy / d}; return true; } //intersecting circles int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) { if (r1 < r2) { swap(o1, o2); swap(r1, r2); } if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) { return 3; } ld ln = len(o1 - o2); if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) { return 0; } ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln; vec v = norm(o2 - o1); point a = o1 + v * d; if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) { i1 = a; return 1; } v = ort(v) * sqrt(sq(r1) - sq(d)); i1 = a + v; i2 = a - v; return 2; } //intersecting line and circle, line should be normed int intersect(point o, ld r, line l, point &i1, point &i2) { ld len = abs(l.eval(o)); int sgn = sign(len - r); if (sgn == 1) { return 0; } vec v = norm(vec{l.a, l.b}) * len; if (sign(l.eval(o + v)) != 0) { v = vec{0, 0} - v; } point a = o + v; if (sgn == 0) { i1 = a; return 1; } v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len)); i1 = a + v; i2 = a - v; return 2; } #line 11 "verify/geometry/igor-tests/13.cpp" signed main() { cin.tie(0)->sync_with_stdio(0); cout.precision(20), cout.setf(ios::fixed); int n; cin >> n; vector<point> p(n); for (auto& [x, y] : p) { cin >> x >> y; } ld ans = 0; for (int i = 0; i < n; ++i) { ans += p[i] % p[(i + 1) % n]; } ans = abs(ans) / 2; cout << (ll)(ans) << (sign(ans - (ll)ans) == 1 ? ".5" : "") << endl; }