Youthful-Passion-Fruit-teambook

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub AlexanderNekrasov/Youthful-Passion-Fruit-teambook

:heavy_check_mark: verify/geometry/igor-tests/include-all.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#define main main2
#include "../../../contest/template.cpp"
#undef main

namespace a0 {
#include "01.cpp"
};
namespace a1 {
#include "02.cpp"
};
namespace a2 {
#include "03.cpp"
};
namespace a3 {
#include "04.cpp"
};
namespace a4 {
#include "05.cpp"
};
namespace a5 {
#include "06.cpp"
};
namespace a6 {
#include "07.cpp"
};
namespace a7 {
#include "08.cpp"
};
namespace a8{
#include "09.cpp"
};
namespace a9 {
#include "10.cpp"
};
namespace a10 {
#include "11.cpp"
};
namespace a11 {
#include "12.cpp"
};
namespace a12 {
#include "13.cpp"
};
namespace a13 {
#include "14.cpp"
};
namespace a14 {
#include "15.cpp"
};
namespace a15 {
#include "16.cpp"
};
namespace a16 {
#include "17.cpp"
};
namespace a17 {
#include "20.cpp"
};
void test() {
}

int main() {
    int a, b;
    cin >> a >> b;
    if (a == 1234 && b == 5678) test();
    cout << a + b << endl;
}
#line 1 "verify/geometry/igor-tests/include-all.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#define main main2
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#include <bits/stdc++.h>
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 4 "verify/geometry/igor-tests/include-all.test.cpp"
#undef main

namespace a0 {
#line 1 "verify/geometry/igor-tests/01.cpp"
// Yandex Algo 2023-2024. C. Геометрия 1 A - Площадь треугольника
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55061
#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 5 "verify/geometry/igor-tests/01.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 8 "verify/geometry/igor-tests/01.cpp"

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    point a, b, c;
    cin >> a.x >> a.y >> b.x >> b.y >> c.x >> c.y;
    cout << abs((b - a) % (c - a)) / 2 << endl;
}
#line 8 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a1 {
#line 1 "verify/geometry/igor-tests/02.cpp"
// Yandex Algo 2023-2024. C. Геометрия 1 B - Угол между векторами
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55061
#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 5 "verify/geometry/igor-tests/02.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 8 "verify/geometry/igor-tests/02.cpp"

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    vec a, b;
    cin >> a.x >> a.y >> b.x >> b.y;
    cout << abs(getAngle(a, b)) << endl;
}
#line 11 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a2 {
#line 1 "verify/geometry/igor-tests/03.cpp"
// Yandex Algo 2023-2024. C. Геометрия 1 C - Точка в углу
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55061
#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 5 "verify/geometry/igor-tests/03.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 8 "verify/geometry/igor-tests/03.cpp"

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);

    vec a, o, b, p;
    cin >> a.x >> a.y >> o.x >> o.y >> b.x >> b.y >> p.x >> p.y;
    a = a - o;
    b = b - o;
    if (sign(a % b) <= 0) {
        swap(a, b);
    }
    p = p - o;
    bool ok = true;
    if (sign(a % b) == 1) {
        ok = sign(a % p) >= 0 && sign(p % b) >= 0;
    } else {
        ok = !(sign(a % p) < 0 && sign(p % b) < 0);
    }
    if (ok) {
        cout << "YES\n";
    } else {
        cout << "NO\n";
    }

}
#line 14 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a3 {
#line 1 "verify/geometry/igor-tests/04.cpp"
// Yandex Algo 2023-2024. C. Геометрия 1 D - Пересечение отрезков
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55061
#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 5 "verify/geometry/igor-tests/04.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 1 "geometry/Intersections.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: Geometry intersections
 */

bool isCrossed(ld lx, ld rx, ld ly, ld ry) {
    if (lx > rx)
        swap(lx, rx);
    if (ly > ry)
        swap(ly, ry);
    return sign(min(rx, ry) - max(lx, ly)) >= 0;
}

// if two segments [a, b] and [c, d] has AT LEAST one common point -> true
bool intersects(const point &a, const point &b, const point &c, const point &d) {
    if (!isCrossed(a.x, b.x, c.x, d.x))
        return false;
    if (!isCrossed(a.y, b.y, c.y, d.y))
        return false;
    if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0;
    if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0;
    return 1;
}
//intersecting lines
bool intersect(line l, line m, point &I) {
    ld d = l.b * m.a - m.b * l.a;
    if (sign(d) == 0) {
        return false;
    }
    ld dx = m.b * l.c - m.c * l.b;
    ld dy = m.c * l.a - l.c * m.a;
    I = {dx / d, dy / d};
    return true;
}
//intersecting circles
int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) {
    if (r1 < r2) {
        swap(o1, o2);
        swap(r1, r2);
    }
    if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) {
        return 3;
    }
    ld ln = len(o1 - o2);
    if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) {
        return 0;
    }
    ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln;
    vec v = norm(o2 - o1);
    point a = o1 + v * d;
    if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) {
        i1 = a;
        return 1;
    }
    v = ort(v) * sqrt(sq(r1) - sq(d));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
//intersecting line and circle, line should be normed
int intersect(point o, ld r, line l, point &i1, point &i2) {
    ld len = abs(l.eval(o));
    int sgn = sign(len - r);
    if (sgn == 1) {
        return 0;
    }
    vec v = norm(vec{l.a, l.b}) * len;
    if (sign(l.eval(o + v)) != 0) {
        v = vec{0, 0} - v;
    }
    point a = o + v;
    if (sgn == 0) {
        i1 = a;
        return 1;
    }
    v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
#line 10 "verify/geometry/igor-tests/04.cpp"

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    vec a, b, c, d;
    cin >> a.x >> a.y >> b.x >> b.y >> c.x >> c.y >> d.x >> d.y;
    if (intersects(a, b, c, d)) {
        cout << "YES\n";
    } else {
        cout << "NO\n";
    }
}
#line 17 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a4 {
#line 1 "verify/geometry/igor-tests/05.cpp"
// Yandex Algo 2023-2024. C. Геометрия 1 E - Расстояние от точки до прямой
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55061

#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 6 "verify/geometry/igor-tests/05.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 10 "verify/geometry/igor-tests/05.cpp"

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    point p;
    cin >> p.x >> p.y;
    line l;
    cin >> l.a >> l.b >> l.c;
    l.norm();
    cout << abs(l.eval(p)) << endl;
}
#line 20 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a5 {
#line 1 "verify/geometry/igor-tests/06.cpp"
// Yandex Algo 2023-2024. C. Геометрия 1 F - Пересечение прямых
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55061

#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 6 "verify/geometry/igor-tests/06.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 1 "geometry/Intersections.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: Geometry intersections
 */

bool isCrossed(ld lx, ld rx, ld ly, ld ry) {
    if (lx > rx)
        swap(lx, rx);
    if (ly > ry)
        swap(ly, ry);
    return sign(min(rx, ry) - max(lx, ly)) >= 0;
}

// if two segments [a, b] and [c, d] has AT LEAST one common point -> true
bool intersects(const point &a, const point &b, const point &c, const point &d) {
    if (!isCrossed(a.x, b.x, c.x, d.x))
        return false;
    if (!isCrossed(a.y, b.y, c.y, d.y))
        return false;
    if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0;
    if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0;
    return 1;
}
//intersecting lines
bool intersect(line l, line m, point &I) {
    ld d = l.b * m.a - m.b * l.a;
    if (sign(d) == 0) {
        return false;
    }
    ld dx = m.b * l.c - m.c * l.b;
    ld dy = m.c * l.a - l.c * m.a;
    I = {dx / d, dy / d};
    return true;
}
//intersecting circles
int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) {
    if (r1 < r2) {
        swap(o1, o2);
        swap(r1, r2);
    }
    if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) {
        return 3;
    }
    ld ln = len(o1 - o2);
    if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) {
        return 0;
    }
    ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln;
    vec v = norm(o2 - o1);
    point a = o1 + v * d;
    if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) {
        i1 = a;
        return 1;
    }
    v = ort(v) * sqrt(sq(r1) - sq(d));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
//intersecting line and circle, line should be normed
int intersect(point o, ld r, line l, point &i1, point &i2) {
    ld len = abs(l.eval(o));
    int sgn = sign(len - r);
    if (sgn == 1) {
        return 0;
    }
    vec v = norm(vec{l.a, l.b}) * len;
    if (sign(l.eval(o + v)) != 0) {
        v = vec{0, 0} - v;
    }
    point a = o + v;
    if (sgn == 0) {
        i1 = a;
        return 1;
    }
    v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
#line 11 "verify/geometry/igor-tests/06.cpp"

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    vec a, b, c, d;
    line l, m;
    cin >> a.x >> a.y >> b.x >> b.y >> c.x >> c.y >> d.x >> d.y;
    l = getln(a, b);
    m = getln(c, d);
    vec ans;
    if (intersect(l, m, ans)) {
        cout << 1 << " " << ans.x << " " << ans.y << endl;
    } else if (l == m) {
        cout << 2 << endl;
    } else {
        cout << 0 << endl;
    }
}
#line 23 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a6 {
#line 1 "verify/geometry/igor-tests/07.cpp"
// Yandex Algo 2023-2024. C. Геометрия 1 G - Пусти козла в огород - 1
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55061

#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 6 "verify/geometry/igor-tests/07.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 1 "geometry/Intersections.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: Geometry intersections
 */

bool isCrossed(ld lx, ld rx, ld ly, ld ry) {
    if (lx > rx)
        swap(lx, rx);
    if (ly > ry)
        swap(ly, ry);
    return sign(min(rx, ry) - max(lx, ly)) >= 0;
}

// if two segments [a, b] and [c, d] has AT LEAST one common point -> true
bool intersects(const point &a, const point &b, const point &c, const point &d) {
    if (!isCrossed(a.x, b.x, c.x, d.x))
        return false;
    if (!isCrossed(a.y, b.y, c.y, d.y))
        return false;
    if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0;
    if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0;
    return 1;
}
//intersecting lines
bool intersect(line l, line m, point &I) {
    ld d = l.b * m.a - m.b * l.a;
    if (sign(d) == 0) {
        return false;
    }
    ld dx = m.b * l.c - m.c * l.b;
    ld dy = m.c * l.a - l.c * m.a;
    I = {dx / d, dy / d};
    return true;
}
//intersecting circles
int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) {
    if (r1 < r2) {
        swap(o1, o2);
        swap(r1, r2);
    }
    if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) {
        return 3;
    }
    ld ln = len(o1 - o2);
    if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) {
        return 0;
    }
    ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln;
    vec v = norm(o2 - o1);
    point a = o1 + v * d;
    if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) {
        i1 = a;
        return 1;
    }
    v = ort(v) * sqrt(sq(r1) - sq(d));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
//intersecting line and circle, line should be normed
int intersect(point o, ld r, line l, point &i1, point &i2) {
    ld len = abs(l.eval(o));
    int sgn = sign(len - r);
    if (sgn == 1) {
        return 0;
    }
    vec v = norm(vec{l.a, l.b}) * len;
    if (sign(l.eval(o + v)) != 0) {
        v = vec{0, 0} - v;
    }
    point a = o + v;
    if (sgn == 0) {
        i1 = a;
        return 1;
    }
    v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
#line 11 "verify/geometry/igor-tests/07.cpp"

const ld PI = acos(-1);

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    point a, b, c;
    cin >> a.x >> a.y >> b.x >> b.y >> c.x >> c.y;
    auto calc = [](vec lhs, vec rhs) -> ld {
        ld sgn = sign(lhs % rhs);
        if (!sgn) {
            return 180;
        }
        if (sgn < 0) {
            swap(lhs, rhs);
        }
        return atan2(lhs % rhs, lhs * rhs) / (2 * PI) * 360;
    };
    cout << max({calc(b - a, c - a), calc(c - b, a - b), calc(a - c, b - c)}) << endl;
}
#line 26 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a7 {
#line 1 "verify/geometry/igor-tests/08.cpp"
// Yandex Algo 2023-2024. C. Геометрия 1 H - Биссектриса
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55061

#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 6 "verify/geometry/igor-tests/08.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 10 "verify/geometry/igor-tests/08.cpp"

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    point x, y, z;
    cin >> x.x >> x.y >> y.x >> y.y >> z.x >> z.y;
    y = norm(y - x);
    z = norm(z - x);
    line l = getln(x, x + y + z);
    cout << l.a << " " << l.b << " " << l.c << endl;
}
#line 29 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a8{
#line 1 "verify/geometry/igor-tests/09.cpp"
// Yandex Algo 2023-2024. C. Геометрия 1 I - Пусти козла в огород - 4
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55061

#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 6 "verify/geometry/igor-tests/09.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 1 "geometry/Intersections.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: Geometry intersections
 */

bool isCrossed(ld lx, ld rx, ld ly, ld ry) {
    if (lx > rx)
        swap(lx, rx);
    if (ly > ry)
        swap(ly, ry);
    return sign(min(rx, ry) - max(lx, ly)) >= 0;
}

// if two segments [a, b] and [c, d] has AT LEAST one common point -> true
bool intersects(const point &a, const point &b, const point &c, const point &d) {
    if (!isCrossed(a.x, b.x, c.x, d.x))
        return false;
    if (!isCrossed(a.y, b.y, c.y, d.y))
        return false;
    if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0;
    if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0;
    return 1;
}
//intersecting lines
bool intersect(line l, line m, point &I) {
    ld d = l.b * m.a - m.b * l.a;
    if (sign(d) == 0) {
        return false;
    }
    ld dx = m.b * l.c - m.c * l.b;
    ld dy = m.c * l.a - l.c * m.a;
    I = {dx / d, dy / d};
    return true;
}
//intersecting circles
int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) {
    if (r1 < r2) {
        swap(o1, o2);
        swap(r1, r2);
    }
    if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) {
        return 3;
    }
    ld ln = len(o1 - o2);
    if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) {
        return 0;
    }
    ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln;
    vec v = norm(o2 - o1);
    point a = o1 + v * d;
    if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) {
        i1 = a;
        return 1;
    }
    v = ort(v) * sqrt(sq(r1) - sq(d));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
//intersecting line and circle, line should be normed
int intersect(point o, ld r, line l, point &i1, point &i2) {
    ld len = abs(l.eval(o));
    int sgn = sign(len - r);
    if (sgn == 1) {
        return 0;
    }
    vec v = norm(vec{l.a, l.b}) * len;
    if (sign(l.eval(o + v)) != 0) {
        v = vec{0, 0} - v;
    }
    point a = o + v;
    if (sgn == 0) {
        i1 = a;
        return 1;
    }
    v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
#line 11 "verify/geometry/igor-tests/09.cpp"

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    point a, b, c;
    cin >> a.x >> a.y >> b.x >> b.y >> c.x >> c.y;
    vec v1, v2;
    v1 = norm(b - a);
    v2 = norm(c - a);
    line l = getln(a, a + v1 + v2);
    v1 = norm(a - b);
    v2 = norm(c - b);
    line m = getln(b, b + v1 + v2);
    point ans;
    if (intersect(l, m, ans)) {
      cout << ans.x << " " << ans.y << endl;
    } else {
      assert(false);
    }
}
#line 32 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a9 {
#line 1 "verify/geometry/igor-tests/10.cpp"
// Yandex Algo 2023-2024. C. Геометрия 2 A - Касательные к окружности
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55063
#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 5 "verify/geometry/igor-tests/10.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 1 "geometry/Tangents.cpp"
/**
 * Author: Igor Markelov
 * Date: 2022-11-18
 * Description: Tangents to circles.
 */
// tangents from point to circle
int tangents(point &o, ld r, point &p, point &i1, point &i2) {
    ld ln = len(o - p);
    int sgn = sign(ln - r);
    if (sgn == -1) {
        return 0;
    } else if (sgn == 0) {
        i1 = p;
        return 1;
    } else {
        ld x = sq(r) / ln;
        vec v = norm(p - o) * x;
        point a = o + v;
        v = ort(norm(p - o)) * sqrt(sq(r) - sq(x));
        i1 = a + v;
        i2 = a - v;
        return 2;
    }
}

void _tangents(point c, ld r1, ld r2, vector<line> &ans) {
    ld r = r2 - r1;
    ld z = sq(c.x) + sq(c.y);
    ld d = z - sq(r);
    if (sign(d) == -1)
        return;
    d = sqrt(abs(d));
    line l;
    l.a = (c.x * r + c.y * d) / z;
    l.b = (c.y * r - c.x * d) / z;
    l.c = r1;
    ans.push_back(l);
}
// tangents between two circles
vector<line> tangents(point o1, ld r1, point o2, ld r2) {
    vector<line> ans;
    for (int i = -1; i <= 1; i += 2)
        for (int j = -1; j <= 1; j += 2)
            _tangents(o2 - o1, r1 * i, r2 * j, ans);
    for (int i = 0; i < (int)ans.size(); ++i)
        ans[i].c -= ans[i].a * o1.x + ans[i].b * o1.y;
    return ans;
}
#line 10 "verify/geometry/igor-tests/10.cpp"


signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    point o, p;
    ld r;
    cin >> o.x >> o.y >> r >> p.x >> p.y;
    point I1, I2;
    int ans = tangents(o, r, p, I1, I2);
    if (!ans) {
      cout << ans << endl;
    } else if (ans == 1) {
      cout << ans << "\n" << I1.x << " " << I1.y << endl;
    } else if (ans == 2) {
      cout << ans << "\n" << I1.x << " " << I1.y << "\n" << I2.x << " " << I2.y << endl;
    }
}
#line 35 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a10 {
#line 1 "verify/geometry/igor-tests/11.cpp"
// Yandex Algo 2023-2024. C. Геометрия 2 B - Пересекаем окружности
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55063
#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 5 "verify/geometry/igor-tests/11.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 1 "geometry/Tangents.cpp"
/**
 * Author: Igor Markelov
 * Date: 2022-11-18
 * Description: Tangents to circles.
 */
// tangents from point to circle
int tangents(point &o, ld r, point &p, point &i1, point &i2) {
    ld ln = len(o - p);
    int sgn = sign(ln - r);
    if (sgn == -1) {
        return 0;
    } else if (sgn == 0) {
        i1 = p;
        return 1;
    } else {
        ld x = sq(r) / ln;
        vec v = norm(p - o) * x;
        point a = o + v;
        v = ort(norm(p - o)) * sqrt(sq(r) - sq(x));
        i1 = a + v;
        i2 = a - v;
        return 2;
    }
}

void _tangents(point c, ld r1, ld r2, vector<line> &ans) {
    ld r = r2 - r1;
    ld z = sq(c.x) + sq(c.y);
    ld d = z - sq(r);
    if (sign(d) == -1)
        return;
    d = sqrt(abs(d));
    line l;
    l.a = (c.x * r + c.y * d) / z;
    l.b = (c.y * r - c.x * d) / z;
    l.c = r1;
    ans.push_back(l);
}
// tangents between two circles
vector<line> tangents(point o1, ld r1, point o2, ld r2) {
    vector<line> ans;
    for (int i = -1; i <= 1; i += 2)
        for (int j = -1; j <= 1; j += 2)
            _tangents(o2 - o1, r1 * i, r2 * j, ans);
    for (int i = 0; i < (int)ans.size(); ++i)
        ans[i].c -= ans[i].a * o1.x + ans[i].b * o1.y;
    return ans;
}
#line 1 "geometry/Intersections.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: Geometry intersections
 */

bool isCrossed(ld lx, ld rx, ld ly, ld ry) {
    if (lx > rx)
        swap(lx, rx);
    if (ly > ry)
        swap(ly, ry);
    return sign(min(rx, ry) - max(lx, ly)) >= 0;
}

// if two segments [a, b] and [c, d] has AT LEAST one common point -> true
bool intersects(const point &a, const point &b, const point &c, const point &d) {
    if (!isCrossed(a.x, b.x, c.x, d.x))
        return false;
    if (!isCrossed(a.y, b.y, c.y, d.y))
        return false;
    if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0;
    if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0;
    return 1;
}
//intersecting lines
bool intersect(line l, line m, point &I) {
    ld d = l.b * m.a - m.b * l.a;
    if (sign(d) == 0) {
        return false;
    }
    ld dx = m.b * l.c - m.c * l.b;
    ld dy = m.c * l.a - l.c * m.a;
    I = {dx / d, dy / d};
    return true;
}
//intersecting circles
int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) {
    if (r1 < r2) {
        swap(o1, o2);
        swap(r1, r2);
    }
    if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) {
        return 3;
    }
    ld ln = len(o1 - o2);
    if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) {
        return 0;
    }
    ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln;
    vec v = norm(o2 - o1);
    point a = o1 + v * d;
    if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) {
        i1 = a;
        return 1;
    }
    v = ort(v) * sqrt(sq(r1) - sq(d));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
//intersecting line and circle, line should be normed
int intersect(point o, ld r, line l, point &i1, point &i2) {
    ld len = abs(l.eval(o));
    int sgn = sign(len - r);
    if (sgn == 1) {
        return 0;
    }
    vec v = norm(vec{l.a, l.b}) * len;
    if (sign(l.eval(o + v)) != 0) {
        v = vec{0, 0} - v;
    }
    point a = o + v;
    if (sgn == 0) {
        i1 = a;
        return 1;
    }
    v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
#line 11 "verify/geometry/igor-tests/11.cpp"


signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t;
    cin >> t;
    while (t--) {
      point o1, o2;
      ld r1, r2;
      cin >> o1.x >> o1.y >> r1 >> o2.x >> o2.y >> r2;
      point I1, I2;
      int ans = intersect(o1, r1, o2, r2, I1, I2);
      if (!ans || ans == 3) {
        cout << ans << endl;
      } else if (ans == 1) {
        cout << ans << "\n" << I1.x << " " << I1.y << endl;
      } else if (ans == 2) {
        point fans = (I1 + I2) / 2;
        cout << ans << "\n"
             << fans.x << " " << fans.y << "\n"
             << len(o1 - fans) << " " << len(I1 - fans) << "\n"
             << I1.x << " " << I1.y << "\n"
             << I2.x << " " << I2.y << endl;
      }
    }
}
#line 38 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a11 {
#line 1 "verify/geometry/igor-tests/12.cpp"
// Yandex Algo 2023-2024. C. Геометрия 2 C - Прямая и окружность
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55063
#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 5 "verify/geometry/igor-tests/12.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 1 "geometry/Tangents.cpp"
/**
 * Author: Igor Markelov
 * Date: 2022-11-18
 * Description: Tangents to circles.
 */
// tangents from point to circle
int tangents(point &o, ld r, point &p, point &i1, point &i2) {
    ld ln = len(o - p);
    int sgn = sign(ln - r);
    if (sgn == -1) {
        return 0;
    } else if (sgn == 0) {
        i1 = p;
        return 1;
    } else {
        ld x = sq(r) / ln;
        vec v = norm(p - o) * x;
        point a = o + v;
        v = ort(norm(p - o)) * sqrt(sq(r) - sq(x));
        i1 = a + v;
        i2 = a - v;
        return 2;
    }
}

void _tangents(point c, ld r1, ld r2, vector<line> &ans) {
    ld r = r2 - r1;
    ld z = sq(c.x) + sq(c.y);
    ld d = z - sq(r);
    if (sign(d) == -1)
        return;
    d = sqrt(abs(d));
    line l;
    l.a = (c.x * r + c.y * d) / z;
    l.b = (c.y * r - c.x * d) / z;
    l.c = r1;
    ans.push_back(l);
}
// tangents between two circles
vector<line> tangents(point o1, ld r1, point o2, ld r2) {
    vector<line> ans;
    for (int i = -1; i <= 1; i += 2)
        for (int j = -1; j <= 1; j += 2)
            _tangents(o2 - o1, r1 * i, r2 * j, ans);
    for (int i = 0; i < (int)ans.size(); ++i)
        ans[i].c -= ans[i].a * o1.x + ans[i].b * o1.y;
    return ans;
}
#line 1 "geometry/Intersections.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: Geometry intersections
 */

bool isCrossed(ld lx, ld rx, ld ly, ld ry) {
    if (lx > rx)
        swap(lx, rx);
    if (ly > ry)
        swap(ly, ry);
    return sign(min(rx, ry) - max(lx, ly)) >= 0;
}

// if two segments [a, b] and [c, d] has AT LEAST one common point -> true
bool intersects(const point &a, const point &b, const point &c, const point &d) {
    if (!isCrossed(a.x, b.x, c.x, d.x))
        return false;
    if (!isCrossed(a.y, b.y, c.y, d.y))
        return false;
    if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0;
    if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0;
    return 1;
}
//intersecting lines
bool intersect(line l, line m, point &I) {
    ld d = l.b * m.a - m.b * l.a;
    if (sign(d) == 0) {
        return false;
    }
    ld dx = m.b * l.c - m.c * l.b;
    ld dy = m.c * l.a - l.c * m.a;
    I = {dx / d, dy / d};
    return true;
}
//intersecting circles
int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) {
    if (r1 < r2) {
        swap(o1, o2);
        swap(r1, r2);
    }
    if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) {
        return 3;
    }
    ld ln = len(o1 - o2);
    if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) {
        return 0;
    }
    ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln;
    vec v = norm(o2 - o1);
    point a = o1 + v * d;
    if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) {
        i1 = a;
        return 1;
    }
    v = ort(v) * sqrt(sq(r1) - sq(d));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
//intersecting line and circle, line should be normed
int intersect(point o, ld r, line l, point &i1, point &i2) {
    ld len = abs(l.eval(o));
    int sgn = sign(len - r);
    if (sgn == 1) {
        return 0;
    }
    vec v = norm(vec{l.a, l.b}) * len;
    if (sign(l.eval(o + v)) != 0) {
        v = vec{0, 0} - v;
    }
    point a = o + v;
    if (sgn == 0) {
        i1 = a;
        return 1;
    }
    v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
#line 11 "verify/geometry/igor-tests/12.cpp"


signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    point o;
    ld r;
    line l;
    cin >> o.x >> o.y >> r >> l.a >> l.b >> l.c;
    point I1, I2;
    l.norm();
    int ans = intersect(o, r, l, I1, I2);
    if (!ans) {
      cout << ans << endl;
    } else if (ans == 1) {
      cout << ans << "\n" << I1.x << " " << I1.y << endl;
    } else if (ans == 2) {
      cout << ans << "\n" << I1.x << " " << I1.y << "\n" << I2.x << " " << I2.y << endl;
    }
}
#line 41 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a12 {
#line 1 "verify/geometry/igor-tests/13.cpp"
// Yandex Algo 2023-2024. C. Геометрия 2 D - Площадь многоугольника
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55063
#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 5 "verify/geometry/igor-tests/13.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 1 "geometry/Tangents.cpp"
/**
 * Author: Igor Markelov
 * Date: 2022-11-18
 * Description: Tangents to circles.
 */
// tangents from point to circle
int tangents(point &o, ld r, point &p, point &i1, point &i2) {
    ld ln = len(o - p);
    int sgn = sign(ln - r);
    if (sgn == -1) {
        return 0;
    } else if (sgn == 0) {
        i1 = p;
        return 1;
    } else {
        ld x = sq(r) / ln;
        vec v = norm(p - o) * x;
        point a = o + v;
        v = ort(norm(p - o)) * sqrt(sq(r) - sq(x));
        i1 = a + v;
        i2 = a - v;
        return 2;
    }
}

void _tangents(point c, ld r1, ld r2, vector<line> &ans) {
    ld r = r2 - r1;
    ld z = sq(c.x) + sq(c.y);
    ld d = z - sq(r);
    if (sign(d) == -1)
        return;
    d = sqrt(abs(d));
    line l;
    l.a = (c.x * r + c.y * d) / z;
    l.b = (c.y * r - c.x * d) / z;
    l.c = r1;
    ans.push_back(l);
}
// tangents between two circles
vector<line> tangents(point o1, ld r1, point o2, ld r2) {
    vector<line> ans;
    for (int i = -1; i <= 1; i += 2)
        for (int j = -1; j <= 1; j += 2)
            _tangents(o2 - o1, r1 * i, r2 * j, ans);
    for (int i = 0; i < (int)ans.size(); ++i)
        ans[i].c -= ans[i].a * o1.x + ans[i].b * o1.y;
    return ans;
}
#line 1 "geometry/Intersections.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: Geometry intersections
 */

bool isCrossed(ld lx, ld rx, ld ly, ld ry) {
    if (lx > rx)
        swap(lx, rx);
    if (ly > ry)
        swap(ly, ry);
    return sign(min(rx, ry) - max(lx, ly)) >= 0;
}

// if two segments [a, b] and [c, d] has AT LEAST one common point -> true
bool intersects(const point &a, const point &b, const point &c, const point &d) {
    if (!isCrossed(a.x, b.x, c.x, d.x))
        return false;
    if (!isCrossed(a.y, b.y, c.y, d.y))
        return false;
    if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0;
    if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0;
    return 1;
}
//intersecting lines
bool intersect(line l, line m, point &I) {
    ld d = l.b * m.a - m.b * l.a;
    if (sign(d) == 0) {
        return false;
    }
    ld dx = m.b * l.c - m.c * l.b;
    ld dy = m.c * l.a - l.c * m.a;
    I = {dx / d, dy / d};
    return true;
}
//intersecting circles
int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) {
    if (r1 < r2) {
        swap(o1, o2);
        swap(r1, r2);
    }
    if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) {
        return 3;
    }
    ld ln = len(o1 - o2);
    if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) {
        return 0;
    }
    ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln;
    vec v = norm(o2 - o1);
    point a = o1 + v * d;
    if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) {
        i1 = a;
        return 1;
    }
    v = ort(v) * sqrt(sq(r1) - sq(d));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
//intersecting line and circle, line should be normed
int intersect(point o, ld r, line l, point &i1, point &i2) {
    ld len = abs(l.eval(o));
    int sgn = sign(len - r);
    if (sgn == 1) {
        return 0;
    }
    vec v = norm(vec{l.a, l.b}) * len;
    if (sign(l.eval(o + v)) != 0) {
        v = vec{0, 0} - v;
    }
    point a = o + v;
    if (sgn == 0) {
        i1 = a;
        return 1;
    }
    v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
#line 11 "verify/geometry/igor-tests/13.cpp"


signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int n;
    cin >> n;
    vector<point> p(n);
    for (auto& [x, y] : p) {
      cin >> x >> y;
    }
    ld ans = 0;
    for (int i = 0; i < n; ++i) {
        ans += p[i] % p[(i + 1) % n];
    }
    ans = abs(ans) / 2;
    cout << (ll)(ans) << (sign(ans - (ll)ans) == 1 ? ".5" : "") << endl;
}
#line 44 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a13 {
#line 1 "verify/geometry/igor-tests/14.cpp"
// Yandex Algo 2023-2024. C. Геометрия 2 E - Точка в многоугольнике
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55063
#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 5 "verify/geometry/igor-tests/14.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 1 "geometry/Intersections.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: Geometry intersections
 */

bool isCrossed(ld lx, ld rx, ld ly, ld ry) {
    if (lx > rx)
        swap(lx, rx);
    if (ly > ry)
        swap(ly, ry);
    return sign(min(rx, ry) - max(lx, ly)) >= 0;
}

// if two segments [a, b] and [c, d] has AT LEAST one common point -> true
bool intersects(const point &a, const point &b, const point &c, const point &d) {
    if (!isCrossed(a.x, b.x, c.x, d.x))
        return false;
    if (!isCrossed(a.y, b.y, c.y, d.y))
        return false;
    if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0;
    if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0;
    return 1;
}
//intersecting lines
bool intersect(line l, line m, point &I) {
    ld d = l.b * m.a - m.b * l.a;
    if (sign(d) == 0) {
        return false;
    }
    ld dx = m.b * l.c - m.c * l.b;
    ld dy = m.c * l.a - l.c * m.a;
    I = {dx / d, dy / d};
    return true;
}
//intersecting circles
int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) {
    if (r1 < r2) {
        swap(o1, o2);
        swap(r1, r2);
    }
    if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) {
        return 3;
    }
    ld ln = len(o1 - o2);
    if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) {
        return 0;
    }
    ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln;
    vec v = norm(o2 - o1);
    point a = o1 + v * d;
    if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) {
        i1 = a;
        return 1;
    }
    v = ort(v) * sqrt(sq(r1) - sq(d));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
//intersecting line and circle, line should be normed
int intersect(point o, ld r, line l, point &i1, point &i2) {
    ld len = abs(l.eval(o));
    int sgn = sign(len - r);
    if (sgn == 1) {
        return 0;
    }
    vec v = norm(vec{l.a, l.b}) * len;
    if (sign(l.eval(o + v)) != 0) {
        v = vec{0, 0} - v;
    }
    point a = o + v;
    if (sgn == 0) {
        i1 = a;
        return 1;
    }
    v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
#line 1 "geometry/IsInPolygon.cpp"
/**
 * Author: Igor Markelov
 * Date: 2022-11-18
 * Description: Is in polygon functions
 */

bool isOnSegment(point &a, point &b, point &x) {
    if (sign(len2(a - b)) == 0) {
        return sign(len(a - x)) == 0;
    }
    return sign((b - a) % (x - a)) == 0 && sign((b - x) * (a - x)) <= 0;
    // optional (slower, but works better if there are some precision
    // problems) return sign((b - a).len() - (x - a).len() - (x - b).len())
    // == 0;
}

int isIn(vector<point> &p, point &a) {
    int n = p.size();
    // depends on limitations(2*MAXC + 228)
    point b = a + point{2e9 + 228, 1};
    int cnt = 0;
    for (int i = 0; i < n; ++i) {
        point x = p[i];
        point y = p[i + 1 < n ? i + 1 : 0];
        if (isOnSegment(x, y, a)) {
            // depends on the problem statement
            return 1;
        }
        cnt += intersects(x, y, a, b);
    }
    return 2 * (cnt % 2 == 1);
    /*optional (atan2 is VERY SLOW)!
    ld ans = 0;
    int n = p.size();
    for (int i = 0; i < n; ++i) {
      Point x = p[i];
      Point y = p[i + 1 < n ? i + 1 : 0];
      if (isOnSegment(x, y, a)) {
        // depends on the problem statement
        return true;
      }
      x = x - a;
      y = y - a;
      ans += atan2(x ^ y, x * y);
    }
    return abs(ans) > 1;*/
}

bool isInTriangle(point &a, point &b, point &c, point &x) {
    return sign((b - a) % (x - a)) >= 0 && sign((c - b) % (x - b)) >= 0 &&
           sign((a - c) % (x - c)) >= 0;
}

// points should be in the counterclockwise order
bool isInConvex(vector<point> &p, point &a) {
    int n = p.size();
    assert(n >= 3);
    // assert(isConvex(p));
    // assert(isCounterclockwise(p));
    if (sign((p[1] - p[0]) % (a - p[0])) < 0)
        return 0;
    if (sign((p[n - 1] - p[0]) % (a - p[0])) > 0)
        return 0;
    int pos = lower_bound(p.begin() + 2, p.end(), a,
                          [&](point a, point b) -> bool {
                              return sign((a - p[0]) % (b - p[0])) > 0;
                          }) -
              p.begin();
    assert(pos > 1 && pos < n);
    return isInTriangle(p[0], p[pos - 1], p[pos], a);
}
#line 11 "verify/geometry/igor-tests/14.cpp"


signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
#ifndef LOCAL
    freopen("point.in", "r", stdin);
    freopen("point.out", "w", stdout);
#endif
    int n;
    cin >> n;
    point a;
    cin >> a.x >> a.y;
    vector<point> p(n);
    for (auto& [x, y] : p) {
        cin >> x >> y;
    }
    if (isIn(p, a)) {
        cout << "YES\n";
    } else {
        cout << "NO\n";
    }
}
#line 47 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a14 {
#line 1 "verify/geometry/igor-tests/15.cpp"
// Yandex Algo 2023-2024. C. Геометрия 2 F - Выпукл ли многоугольник
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55063
#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 5 "verify/geometry/igor-tests/15.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Hull.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: Polygon functions
 */

vector<point> hull(vector<point> p, bool need_all=false) {
   sort(all(p));
   p.erase(unique(all(p)), end(p));
   int n = p.size(), k = 0;
   if (n <= 2) return p;
   vector<point> ch(2 * n);
   ld th = need_all ? -EPS : +EPS; // 0 : 1 if int
   for (int i = 0; i < n; ch[k++] = p[i++]) {
     while (k >= 2 && (ch[k - 1] - ch[k - 2]) % (p[i] - ch[k - 1]) < th) --k;
   }
   for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) {
     while (k >= t && (ch[k - 1] - ch[k - 2]) % (p[i] - ch[k - 1]) < th) --k;
   }
   ch.resize(k - 1);
   return ch;
 }
#line 9 "verify/geometry/igor-tests/15.cpp"


signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int n;
    cin >> n;
    vector<point> p(n);
    for (auto& [x, y] : p) {
      cin >> x >> y;
    }
    if (hull(p, true).size() == n) {
      cout << "YES\n";
    } else {
      cout << "NO\n";
    }
}
#line 50 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a15 {
#line 1 "verify/geometry/igor-tests/16.cpp"
// Yandex Algo 2023-2024. C. Геометрия 2 G - Теодор Рузвельт
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=55063
#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 5 "verify/geometry/igor-tests/16.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 1 "geometry/Intersections.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: Geometry intersections
 */

bool isCrossed(ld lx, ld rx, ld ly, ld ry) {
    if (lx > rx)
        swap(lx, rx);
    if (ly > ry)
        swap(ly, ry);
    return sign(min(rx, ry) - max(lx, ly)) >= 0;
}

// if two segments [a, b] and [c, d] has AT LEAST one common point -> true
bool intersects(const point &a, const point &b, const point &c, const point &d) {
    if (!isCrossed(a.x, b.x, c.x, d.x))
        return false;
    if (!isCrossed(a.y, b.y, c.y, d.y))
        return false;
    if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0;
    if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0;
    return 1;
}
//intersecting lines
bool intersect(line l, line m, point &I) {
    ld d = l.b * m.a - m.b * l.a;
    if (sign(d) == 0) {
        return false;
    }
    ld dx = m.b * l.c - m.c * l.b;
    ld dy = m.c * l.a - l.c * m.a;
    I = {dx / d, dy / d};
    return true;
}
//intersecting circles
int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) {
    if (r1 < r2) {
        swap(o1, o2);
        swap(r1, r2);
    }
    if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) {
        return 3;
    }
    ld ln = len(o1 - o2);
    if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) {
        return 0;
    }
    ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln;
    vec v = norm(o2 - o1);
    point a = o1 + v * d;
    if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) {
        i1 = a;
        return 1;
    }
    v = ort(v) * sqrt(sq(r1) - sq(d));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
//intersecting line and circle, line should be normed
int intersect(point o, ld r, line l, point &i1, point &i2) {
    ld len = abs(l.eval(o));
    int sgn = sign(len - r);
    if (sgn == 1) {
        return 0;
    }
    vec v = norm(vec{l.a, l.b}) * len;
    if (sign(l.eval(o + v)) != 0) {
        v = vec{0, 0} - v;
    }
    point a = o + v;
    if (sgn == 0) {
        i1 = a;
        return 1;
    }
    v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
#line 1 "geometry/IsInPolygon.cpp"
/**
 * Author: Igor Markelov
 * Date: 2022-11-18
 * Description: Is in polygon functions
 */

bool isOnSegment(point &a, point &b, point &x) {
    if (sign(len2(a - b)) == 0) {
        return sign(len(a - x)) == 0;
    }
    return sign((b - a) % (x - a)) == 0 && sign((b - x) * (a - x)) <= 0;
    // optional (slower, but works better if there are some precision
    // problems) return sign((b - a).len() - (x - a).len() - (x - b).len())
    // == 0;
}

int isIn(vector<point> &p, point &a) {
    int n = p.size();
    // depends on limitations(2*MAXC + 228)
    point b = a + point{2e9 + 228, 1};
    int cnt = 0;
    for (int i = 0; i < n; ++i) {
        point x = p[i];
        point y = p[i + 1 < n ? i + 1 : 0];
        if (isOnSegment(x, y, a)) {
            // depends on the problem statement
            return 1;
        }
        cnt += intersects(x, y, a, b);
    }
    return 2 * (cnt % 2 == 1);
    /*optional (atan2 is VERY SLOW)!
    ld ans = 0;
    int n = p.size();
    for (int i = 0; i < n; ++i) {
      Point x = p[i];
      Point y = p[i + 1 < n ? i + 1 : 0];
      if (isOnSegment(x, y, a)) {
        // depends on the problem statement
        return true;
      }
      x = x - a;
      y = y - a;
      ans += atan2(x ^ y, x * y);
    }
    return abs(ans) > 1;*/
}

bool isInTriangle(point &a, point &b, point &c, point &x) {
    return sign((b - a) % (x - a)) >= 0 && sign((c - b) % (x - b)) >= 0 &&
           sign((a - c) % (x - c)) >= 0;
}

// points should be in the counterclockwise order
bool isInConvex(vector<point> &p, point &a) {
    int n = p.size();
    assert(n >= 3);
    // assert(isConvex(p));
    // assert(isCounterclockwise(p));
    if (sign((p[1] - p[0]) % (a - p[0])) < 0)
        return 0;
    if (sign((p[n - 1] - p[0]) % (a - p[0])) > 0)
        return 0;
    int pos = lower_bound(p.begin() + 2, p.end(), a,
                          [&](point a, point b) -> bool {
                              return sign((a - p[0]) % (b - p[0])) > 0;
                          }) -
              p.begin();
    assert(pos > 1 && pos < n);
    return isInTriangle(p[0], p[pos - 1], p[pos], a);
}
#line 11 "verify/geometry/igor-tests/16.cpp"


signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int n, m, k;
    cin >> n >> m >> k;
    vector<point> p(n);
    for (auto& [x, y] : p) {
      cin >> x >> y;
    }
    int cnt = 0;
    for (int i = 0; i < m; ++i) {
      point a;
      cin >> a.x >> a.y;
      if (isInConvex(p, a)) {
        ++cnt;
      }
    }
    if (cnt >= k) {
      cout << "YES\n";
    } else {
      cout << "NO\n";
    }
}
#line 53 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a16 {
#line 1 "verify/geometry/igor-tests/17.cpp"
// Yandex Algo 2023-2024. B'. Геометрия 2 B - Замок
// https://ejudge.algocode.ru/cgi-bin/new-client?contest_id=54021
#define main main228
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 5 "verify/geometry/igor-tests/17.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 1 "geometry/Intersections.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: Geometry intersections
 */

bool isCrossed(ld lx, ld rx, ld ly, ld ry) {
    if (lx > rx)
        swap(lx, rx);
    if (ly > ry)
        swap(ly, ry);
    return sign(min(rx, ry) - max(lx, ly)) >= 0;
}

// if two segments [a, b] and [c, d] has AT LEAST one common point -> true
bool intersects(const point &a, const point &b, const point &c, const point &d) {
    if (!isCrossed(a.x, b.x, c.x, d.x))
        return false;
    if (!isCrossed(a.y, b.y, c.y, d.y))
        return false;
    if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0;
    if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0;
    return 1;
}
//intersecting lines
bool intersect(line l, line m, point &I) {
    ld d = l.b * m.a - m.b * l.a;
    if (sign(d) == 0) {
        return false;
    }
    ld dx = m.b * l.c - m.c * l.b;
    ld dy = m.c * l.a - l.c * m.a;
    I = {dx / d, dy / d};
    return true;
}
//intersecting circles
int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) {
    if (r1 < r2) {
        swap(o1, o2);
        swap(r1, r2);
    }
    if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) {
        return 3;
    }
    ld ln = len(o1 - o2);
    if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) {
        return 0;
    }
    ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln;
    vec v = norm(o2 - o1);
    point a = o1 + v * d;
    if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) {
        i1 = a;
        return 1;
    }
    v = ort(v) * sqrt(sq(r1) - sq(d));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
//intersecting line and circle, line should be normed
int intersect(point o, ld r, line l, point &i1, point &i2) {
    ld len = abs(l.eval(o));
    int sgn = sign(len - r);
    if (sgn == 1) {
        return 0;
    }
    vec v = norm(vec{l.a, l.b}) * len;
    if (sign(l.eval(o + v)) != 0) {
        v = vec{0, 0} - v;
    }
    point a = o + v;
    if (sgn == 0) {
        i1 = a;
        return 1;
    }
    v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
#line 1 "geometry/IsInPolygon.cpp"
/**
 * Author: Igor Markelov
 * Date: 2022-11-18
 * Description: Is in polygon functions
 */

bool isOnSegment(point &a, point &b, point &x) {
    if (sign(len2(a - b)) == 0) {
        return sign(len(a - x)) == 0;
    }
    return sign((b - a) % (x - a)) == 0 && sign((b - x) * (a - x)) <= 0;
    // optional (slower, but works better if there are some precision
    // problems) return sign((b - a).len() - (x - a).len() - (x - b).len())
    // == 0;
}

int isIn(vector<point> &p, point &a) {
    int n = p.size();
    // depends on limitations(2*MAXC + 228)
    point b = a + point{2e9 + 228, 1};
    int cnt = 0;
    for (int i = 0; i < n; ++i) {
        point x = p[i];
        point y = p[i + 1 < n ? i + 1 : 0];
        if (isOnSegment(x, y, a)) {
            // depends on the problem statement
            return 1;
        }
        cnt += intersects(x, y, a, b);
    }
    return 2 * (cnt % 2 == 1);
    /*optional (atan2 is VERY SLOW)!
    ld ans = 0;
    int n = p.size();
    for (int i = 0; i < n; ++i) {
      Point x = p[i];
      Point y = p[i + 1 < n ? i + 1 : 0];
      if (isOnSegment(x, y, a)) {
        // depends on the problem statement
        return true;
      }
      x = x - a;
      y = y - a;
      ans += atan2(x ^ y, x * y);
    }
    return abs(ans) > 1;*/
}

bool isInTriangle(point &a, point &b, point &c, point &x) {
    return sign((b - a) % (x - a)) >= 0 && sign((c - b) % (x - b)) >= 0 &&
           sign((a - c) % (x - c)) >= 0;
}

// points should be in the counterclockwise order
bool isInConvex(vector<point> &p, point &a) {
    int n = p.size();
    assert(n >= 3);
    // assert(isConvex(p));
    // assert(isCounterclockwise(p));
    if (sign((p[1] - p[0]) % (a - p[0])) < 0)
        return 0;
    if (sign((p[n - 1] - p[0]) % (a - p[0])) > 0)
        return 0;
    int pos = lower_bound(p.begin() + 2, p.end(), a,
                          [&](point a, point b) -> bool {
                              return sign((a - p[0]) % (b - p[0])) > 0;
                          }) -
              p.begin();
    assert(pos > 1 && pos < n);
    return isInTriangle(p[0], p[pos - 1], p[pos], a);
}
#line 11 "verify/geometry/igor-tests/17.cpp"


signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int n;
    cin >> n;
    vector<vector<point>> p(n);
    vector<ld> areas(n);
    for (int i = 0; i < n; ++i) {
        int k;
        cin >> k;
        p[i].resize(k);
        for (auto& [x, y] : p[i]) {
            cin >> x >> y;
        }
        ld area = 0;
        for (int j = 0; j < k; ++j) {
            area += p[i][j] % p[i][(j + 1) % k];
        }
        area /= 2;
        area = abs(area);
        areas[i] = area;
    }
    vector<int> order(n);
    iota(all(order), 0);
    sort(all(order), [&](int lhs, int rhs) -> bool { return areas[lhs] < areas[rhs]; }); vector<bool> used(n); int q; cin >> q; for (int i = 0; i < q; ++i) { point a; cin >> a.x >> a.y; int L = -1, R = n; while (L < R - 1) { int M = (L + R) / 2; if (isInConvex(p[order[M]], a)) { R = M; } else { L = M; } } if (R < n) used[R] = true; } ld ans = 0; for (int i = 0; i < n; ++i) { if (used[i]) { ans += areas[order[i]] - (i > 0 ? areas[order[i - 1]] : 0); } } // NOLINT
    cout << ans << endl;
}
#line 56 "verify/geometry/igor-tests/include-all.test.cpp"
};
namespace a17 {
#line 1 "verify/geometry/igor-tests/20.cpp"
// 2021-2022 ICPC NERC (NEERC), North-Western Russia Regional Contest
// (Northern Subregionals) G https://codeforces.com/gym/104011/problem/G
#define main main2
#line 1 "contest/template.cpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#line 5 "contest/template.cpp"
using namespace std;

using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define pbc push_back
#define mp make_pair
#define all(v) (v).begin(), (v).end()
#define vin(v) for (auto &el : a) cin >> el

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) {
    if (y < x) {
        x = y;
    }
}

template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) {
    if (x < y) {
        x = y;
    }
}

void solve() {
    
}

signed main() {
    cin.tie(0)->sync_with_stdio(0);
    cout.precision(20), cout.setf(ios::fixed);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
}
#line 5 "verify/geometry/igor-tests/20.cpp"
#undef main

#line 1 "geometry/Point.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Point
 */

const ld EPS = 1e-7;

ld sq(ld x) {
    return x * x;
}

int sign(ld x) {
    if (x < -EPS) {
        return -1;
    }
    if (x > EPS) {
        return 1;
    }
    return 0;
}

#define vec point
struct point {//% - cross, * - dot
    ld x, y;
    auto operator<=>(const point&) const = default;
};
ld operator*(const point &a, const point &b) {
    return a.x * b.x + a.y * b.y;
}
ld operator%(const point &a, const point &b) {
    return a.x * b.y - a.y * b.x;
}
point operator-(const point &a, const point &b) {
    return {a.x - b.x, a.y - b.y};
}
point operator+(const point &a, const point &b) {
    return {a.x + b.x, a.y + b.y};
}
point operator*(const point &a, ld b) {
    return {a.x * b, a.y * b};
}
point operator/(const point &a, ld b) {
    return {a.x / b, a.y / b};
}
bool operator<(const point &a, const point &b)  {
    if (sign(a.y - b.y) != 0) {
        return a.y < b.y;
    } else if (sign(a.x - b.x) != 0) {
        return a.x < b.x;
    }
    return 0;
}
ld len2(const point &a) {
    return sq(a.x) + sq(a.y);
}
ld len(const point &a) {
    return sqrt(len2(a));
}
point norm(point a) {
    return a / len(a);
}
int half(point a) {
    return (sign(a.y) == -1 || (sign(a.y) ==0 && a.x < 0));
}
point ort(point a) {
    return {-a.y, a.x};
}
point turn(point a, ld ang) {
    return {a.x * cos(ang) - a.y * sin(ang), a.x * sin(ang) + a.y * cos(ang)};
}
ld getAngle(point &a, point &b) {
    return atan2(a % b, a * b);
}
bool cmpHalf(const point &a, const point &b) {
    if (half(a) != half(b)) {
        return half(b);
    } else {
        int sgn = sign(a % b);
        if (!sgn) {
            return len2(a) < len2(b);
        } else {
            return sgn == 1;
        }
    }
}
#line 1 "geometry/Line.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: struct Line
 */

struct line {
    ld a, b, c;
    void norm() {
        // for half planes
        ld d = len({a, b});
        assert(sign(d) > 0);
        a /= d;
        b /= d;
        c /= d;
    }
    ld eval(point p) const { return a * p.x + b * p.y + c; }
    bool isIn(point p) const { return sign(eval(p)) >= 0; }
    bool operator==(const line &other) const {
        return sign(a * other.b - b * other.a) == 0 &&
               sign(a * other.c - c * other.a) == 0 &&
               sign(b * other.c - c * other.b) == 0;
    }
};
line getln(point a, point b) {
    line res;
    res.a = a.y - b.y;
    res.b = b.x - a.x;
    res.c = -(res.a * a.x + res.b * a.y);
    res.norm();
    return res;
}
#line 1 "geometry/Intersections.cpp"
/**
 * Author: alexxela12345,daubi,talant
 * Date: 2024-08-03
 * Description: Geometry intersections
 */

bool isCrossed(ld lx, ld rx, ld ly, ld ry) {
    if (lx > rx)
        swap(lx, rx);
    if (ly > ry)
        swap(ly, ry);
    return sign(min(rx, ry) - max(lx, ly)) >= 0;
}

// if two segments [a, b] and [c, d] has AT LEAST one common point -> true
bool intersects(const point &a, const point &b, const point &c, const point &d) {
    if (!isCrossed(a.x, b.x, c.x, d.x))
        return false;
    if (!isCrossed(a.y, b.y, c.y, d.y))
        return false;
    if (sign((b - a) % (c - a)) * sign((b - a) % (d - a)) == 1) return 0;
    if (sign((d - c) % (a - c)) * sign((d - c) % (b - c)) == 1) return 0;
    return 1;
}
//intersecting lines
bool intersect(line l, line m, point &I) {
    ld d = l.b * m.a - m.b * l.a;
    if (sign(d) == 0) {
        return false;
    }
    ld dx = m.b * l.c - m.c * l.b;
    ld dy = m.c * l.a - l.c * m.a;
    I = {dx / d, dy / d};
    return true;
}
//intersecting circles
int intersect(point o1, ld r1, point o2, ld r2, point &i1, point &i2) {
    if (r1 < r2) {
        swap(o1, o2);
        swap(r1, r2);
    }
    if (sign(r1 - r2) == 0 && len2(o2 - o1) < EPS) {
        return 3;
    }
    ld ln = len(o1 - o2);
    if (sign(ln - r1 - r2) == 1 || sign(r1 - ln - r2) == 1) {
        return 0;
    }
    ld d = (sq(r1) - sq(r2) + sq(ln)) / 2 / ln;
    vec v = norm(o2 - o1);
    point a = o1 + v * d;
    if (sign(ln - r1 - r2) == 0 || sign(ln + r2 - r1) == 0) {
        i1 = a;
        return 1;
    }
    v = ort(v) * sqrt(sq(r1) - sq(d));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
//intersecting line and circle, line should be normed
int intersect(point o, ld r, line l, point &i1, point &i2) {
    ld len = abs(l.eval(o));
    int sgn = sign(len - r);
    if (sgn == 1) {
        return 0;
    }
    vec v = norm(vec{l.a, l.b}) * len;
    if (sign(l.eval(o + v)) != 0) {
        v = vec{0, 0} - v;
    }
    point a = o + v;
    if (sgn == 0) {
        i1 = a;
        return 1;
    }
    v = norm({-l.b, l.a}) * sqrt(sq(r) - sq(len));
    i1 = a + v;
    i2 = a - v;
    return 2;
}
#line 1 "geometry/IsHpiEmpty.cpp"
/**
 * Author: Igor Markelov
 * Date: 2022-11-18
 * Description: Determines is half plane intersectinos.
 * Time: O(n) (expected)
 */
// all lines must be normed!!!!!, sign > 0
bool isHpiEmpty(vector<line> lines) {
    // return hpi(lines).empty();
    // overflow/precision problems?
    shuffle(all(lines), rnd);
    const ld C = 1e9;
    point ans(C, C);
    vector<point> box = {{-C, -C}, {C, -C}, {C, C}, {-C, C}};
    for (int i = 0; i < 4; ++i)
        lines.push_back(getln(box[i], box[(i + 1) % 4]));
    int n = lines.size();
    for (int i = n - 4; i >= 0; --i) {
        if (lines[i].isIn(ans))
            continue;
        point up(0, C + 1), down(0, -C - 1), pi = {lines[i].b, -lines[i].a};
        for (int j = i + 1; j < n; ++j) {
            if (lines[i] == lines[j])
                continue;
            point p, pj = {lines[j].b, -lines[j].a};
            if (!intersect(lines[i], lines[j], p)) {
                if (sign(pi * pj) != -1)
                    continue;
                if (sign(lines[i].c + lines[j].c) *
                        (!sign(pi.y) ? sign(pi.x) : -1) ==
                    1)
                    return true;
            } else {
                if ((!sign(pi.y) ? sign(pi.x) : sign(pi.y)) * (sign(pi % pj)) ==
                    1)
                    chkmin(up, p);
                else
                    chkmax(down, p);
            }
        }
        if ((ans = up) < down)
            return true;
    }
    // for (int i = 0; i < n; ++i) {
    //   assert(lines[i].eval(ans) < EPS);
    // }
    return false;
}
#line 11 "verify/geometry/igor-tests/20.cpp"

int main() {
    cout.precision(20), cout.setf(ios::fixed);
    int n;
    cin >> n;
    vector<point> p(n);
    for (auto& [x, y] : p) {
        cin >> x >> y;
    }
    int pos = min_element(all(p)) - p.begin();
    rotate(p.begin(), p.begin() + pos, p.end());
    vector<point> v;
    for (int i = 0; i < n; ++i) {
        v.push_back(p[i + 1 < n ? i + 1 : 0] - p[i]);
    }
    vector<int> fpos(n);
    for (int i = 0; i < n; ++i) {
        int pos = lower_bound(all(v), point{0,0} - v[i], cmpHalf) - v.begin();
        pos = pos % n;
        fpos[i] = pos;
    }
    auto check = [&](ld x) -> bool {
        vector<line> lines;
        lines.reserve(2 * n);
        auto addLine = [&](int i, int j) {
            vec v1 = (p[j] - p[i]) * (x / (x + 1));
            vec v2 = (p[j + 1 < n ? j + 1 : 0] - p[i]) * (x / (x + 1));
            lines.push_back(getln(p[i] + v1, p[i] + v2));
        };
        for (int i = 0; i < n; ++i) {
            int pos = fpos[i];
            addLine(i, pos);
            addLine(pos, i);
        }
        return !isHpiEmpty(lines);
    };
    ld L = 1, R = 2;
    for (int it = 0; it < 19; ++it) {
        ld M = sqrt(L * R);
        if (check(M)) {
            R = M;
        } else {
            L = M;
        }
    }
    cout << sqrt(L * R) << endl;
}
#line 59 "verify/geometry/igor-tests/include-all.test.cpp"
};
void test() {
}

int main() {
    int a, b;
    cin >> a >> b;
    if (a == 1234 && b == 5678) test();
    cout << a + b << endl;
}
Back to top page